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In the analysis of large strains and unlimited displacements. the coix- 
patibility conditions for translational displacements and rotations of 

elements of a deforming body will be formulated in terms of invariant de- 

formation characteristics. The equilibrium equations are so transformed 
that it becomes possible to introduce a stress function in terms of whose 

derivatives the invariant characteristics of the true stress can be very 

simply expressed. With the aid of complex coordinates the mathematical 
formulation of the problem can be presented in a compact form. The solu- 

tions of actual problems can be found by SUCCf?SSiV8 approximations where 

every step reduces to the solution of the classical biharmonic problem. 
In conclusion, as an example, the stress concentrations near a circular 

cylindrical cavity are studied. 

1. Geometry of the Plane Deformation of a Continuous Body. 
Tw states of the continuous body, the original and the deformed, are 
studied. Ihe position of a material particle in the original state is 
given by the Cartesian coordinates zl, x2, x3. 'lhe displacement vector 
II = ukik denotes the passage of the body from the original to the de- 
formed state to be analyzed. In this paper repeated indices indicate 
sumnation on these indices from one to three. In plane strain, only the 
displacement components u1 and u2 are different from zero, and they are 
assuned to be functions of x1 and r2 only. 

lhe linear components of the strain tensor and the components of the 
vector o are computed from for&as El 1 

En = %,l, S22 = U2,29 2El2 = 4.2 + u2.1 

El3 = E22 = &22 = 0, 01 = 02 = 0, 2% = %l - u1.2 

(1.1) 

The indices 1 and 2 after a cosxna denote partial differentiation with 
respect to the variables xi snd n2, for instance 
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'Ihe projections a&* of the vectors a& which are orthogonal to the 
material coordinate surface elements in the deformed state are expressed 

in tenas of the derivatives of the displacements by the formulas 

all= 1 +a22, al2 = - (siz - @a), al3 = q3 = as1 = as2 = 0 

ae~ = - (ala + OS), a22 = 1 -I- 311, 

0 *a 

a33 = (1 + k) (1 + saz) - q2* f ose 

Finally, we shall introduce expressions, in terms of derivatives of 

the displacanents, for the coefficients of distortion s& of the areas of 

the coordinate surface elements, elongations X of the coordinate fibers, 

and the magnitudes A of the relative change of’tolume: 

k2 = sa2 = (1 + sll)2 + (s1a + %)a 

&a2 -, sz2 = (1 + ~~~)a + (qla - 0~~)~ ss2 = aas” = (1 + A)% 
(1.3) 

The relations introduced here show that the geometry of the deformed 

state of the neighborhood of an arbitrary point of the body and the 
orientation of this neighborhood is completely determined by the four 

derivatives u& #. Qle can also choose another set of four paraneters, 

where an inpo&ant part is played by the strain invariants, as a set of 

coordinates of the deformed state of the neig~rh~d of a point. 

l&note the angle betueen the first principal direction of the strain 

in the original state and the first coordinate direction by 6. lhe 

elongations of the principal fibers will be denoted by X,, where X, = 1. 

Assume that during the deformation the neighborhood of the point rotates 

as a rigid body around i, through au angle o. 

Qx the basis of the geometric interpretation of the parameters 8, o, 

hi, andhzt it may be stated that these parameters are sufficient for the 
determination of the deformed state and the orientation of the neighbor- 
hood of a particle in the deformed state. In particular, 6 i& and 3 c8n 

be expressed in terms of the parameters 8, o, X, and h,. With this goal 
in mind let us study the unit vectors I,, which determine the directions 
of the principal fibers in the original state 

I, = cos&, + sin%,, I, = - sin 6il + cos 8i2, IS = i, 

and the unit vectors I&‘+, which determine the directions of the sams 

material fibers in the deformed state 

I,’ = co.9 (0 + w) i, + sin (9 + 0) i2 

I,’ = - sin (6 + 0) i, + cos (0 + 0) i2, Is’ = is 
(1.4) 
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G-I the other hand, the vectors (1.4) can also be determined from the 

fundamental relation of the general deformation theory [ 2 1 : 

1 
Jn’ --- h [ITI + %is >(: 1, Jr- ((Q/E)) In1 (n=l, 2) (1.5) 

n 

JJere i, x In denotes the vector cross product, and the symbol ((c i,))I, 

represents the result of a linear transformation of the vector I,, by means 

of the tensor ((r ik)). 

By setting the different expressions of the same vectors equal to each 

other, the required relations between thk variant and the invariant strain 

characteristics are easily obtained. Let us reduce these relations to a 

form which is most suitable for further application, and let us solve for 

the respective derivatives: 

2 (1 + Err) = (A, + h*) cos 0 + (h, - 1,) cos (20 + 0) = 2 (1 + &,I) 

2 (are - 0s) = - (h, + h2) sin 0 + (h, - h,) sin (2.0 + 0) = 2u,,, 
(1.6) 

2 (1 + 82s) = (h, + h,) cos 0 - (h, - h2) cos (28 + 0) = 2 (1 + Us,(L) 

2 (El2 + 03) = (A, + h2) sin w i- (h, - h,) sin (ae + 0) = 22x,, 

From this, incidentally, the geometrical meaning of the vector o in 
plane strain can easily be established: 

2w, = (h, -+- h2) sin 0 

If the simplifications inherent in the formation of the linear de- 

formation theory were carried out, then (1.6). would reduce to expressions 

for the strain tensor components with respect to arbitrary axes in terms 

of the principal values of the strain tensor. 

2. Compatibility Cohditions for Translational Diqlace- 
ments of Particles of the Body and Conditions of Continuity 
of Small Rotations. As is well known f 3 I, in the classical theory of 

the requirements of continuity of translational displacements and small 

rotations of the elements of the body lead to the strain c~atibility 
conditions: the St Venant identities and the Beltrami equations. ‘Ihe St 

Venant identities retain their validity as conditions for the continuity 

of the displacements and also the functions ok for deformations which 
are not small. In order to simplify later applications of the compati- 

bility conditions for plane strain in problems formulated in terms of 

stress, the strain compatibility conditions will be written in terms of 

invariant strain characteristics, which preserve the geometrical meaning 

with unlimited strains and displacements. It will here be assuned that 
the constancy of the volume during deformation is a physical property of 
the deforming body: 

A-0 (2.1) 
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‘Ihe logarithmic elongations of change of shape [deviators] are ex- 

pressed in terms of the intensity 3~ and the phase 6 of the change of 

shape [ strain deviator1 by the formulas 

In lk 
(1 f Ajh 

= 3i cos p&4, PI = p, pz I= p + +Tt, p3 = p- $?r (2.2) 

Therefore, the phase of the plane strain of the incompressible material 

is known to be determined: 

~=$x (2.3) 

Thus the principal elongations of the incompressible material in plane 

strain are determined by only one parameter, the intensity of change of 

shape [ strain deviator 1 : 

h, + h, = 2cosh JKS 31, hl-h)ig=Z sinh m 3i, hS= I (2.4) 

In the case of plane strain of the incompressible material, the de- 

formation parameters E ik and oS can be expressed by using formulas (1.6) 

and (2.41, in terms of the invariant strain characteristics si and o and 

the variant quantity 8. Comparing the mixed second derivatives of ui and 

u2 ’ computed according to (1.6), we obtain the conditions of continuity 

of translational displacements of the body elements: 

2 (0 -t w),~ L-: 2cqsh 3 o,, - (cash 3),2 + (sin 20 sinh 3)~ - (cos 20 sinh 3),2 (2.5) 

2 (0 -k- a),% = 2cosh 3 o,, -/- (cash 3),1 - (sin 28 sfnh 3),* - (cos 20 t&h ~1,~ 

where 

3 = 2 1/E& = 2 In (1 + q), 7$q--l (2.6) 

Ihe rotations of the body elements can be determined from equations 

(2.5) if it is assuned that the pure strain characteristics 8 and are 

known. lhe conditions for the continuity of these rotations can easily 
be found from (2.5): 

(cos 20 sitih ?), 22 - (cos 20 sinh 3), 11 - 2 (sin 28 sinh 3), 12 -f- 

+ (cash 3), II -t_ (cash 3). 22 -t 20, 2 (cash 3)~ - 20, i (cash 3), p, = 0 
(2.7) 

Relation (2.7) does not differ in contents from the said St Venant 

identity. If a system of simplifications corresponding to the theory of 

snail deformations is adopted, i.e. if sinh 3 = 3, cash B == 1, then an 

equation is obtained which also agrees in form with the St Venant equa- 
tion. 

3. Stress-Strain Relations, Equilibrium Equations. 'Ihe 
differential equations of equilibrium in Lagrange coordinates [ 2 1 
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contain as the fFdamenta1 unknown functions the generalized stresses &a, 

which are expressed in terms of the coefficients of distortion of the co- 

ordinate surface elements So and the contravariant components o,, of the 

true stress tensor, referred to the deformed system of coordinate fibers. 
If a normal to some material surface element coincided with in before de- 

formation, then the normal to this same material surface element will be 

b, after deformation, hence 

s&k = a&, -t a& (k : 1.2) (3.1) 

Let us recall that on,, represents the orthogonal projection of the 

stress [traction] vector, acting on a surface element whose normal is bll 

in the direction b . It is useful to compute in advance the projections 

of the unit vector: of the normals to the coordinate surface elements in 

the deformed state onto the directions of the principal fibers in the de- 

formed state. Let 

bi, = ft.&* -t_ .!I,&’ 

then on the basis of (3.1) and (1.4) we find 

(3.2) 

blls, = a,, = ccl1 cos (0 + 0) + al2 sin (0 -t_ Q) 

b,,s, = a,, = --a,, sin (0 + 0) + al2 co8 (0 + 0) 

b,,s, = azl = azl cos (0 + 0) + az2 sin (0 + w) 

bzzs, = iz22 = - a21 sin (8 + w) + az2 cos (8 + 0) 

(3.3) 

We will assume henceforward that the principal directions of the 

stresses in the state under consideration coincide with the directions of 

the principal fibers in the deformed state. ‘ken the stress [ traction] 
vectors ua, acting on the surface elements whose normals are bll, can 

easily be expressed in terms of the true principal stresses u1 and u2. 

Thus we haye 

‘3 mn = Qm * bz 

and hence the use of (1.2) leads to the following relations: 

&, = W-k2 + W&2, Z22 := cIla212 + 52a222, El2 - wlldZ1 + s2a12az2 (3.4) 

With formulas (3.3) available, the generalized stresses can be com- 

puted in terms of the principal stresses and the synrnetric characteristics 

of the deformed state. ‘lhe principal stresses can in turn be expressed in 
tens of symnetric stress invariants: the hydrostatic stress o, the octa- 

hedral shearing stress r i, and the stress phase 4 - by means of the 
formulas 
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Since the third principal stress - the axial stress u3 - is determined 

from the value of the hydrostatic stress only, the phase of the true 

stresses in the plane deformed state is known to be 4 = l/6 n. 

‘lhis the examination of the physical properties of a body undergoing 

plane deformations reduces to the experimental determination of the de- 

pendence of the octahedral shearing stress on the intensity of the change 

of shape [ strain deviator I for different values of the mean normal stress. 

Since only a limited range of variation of the hydrostatic stresses will 
be studied, it will be assumed henceforward that the following relation 
is known from experiments: 

Oi = 5i (3i) (3.5) 

It is to hold good universally for the range of hydrostatic stresses 

studied. ‘Ihe intensity of the change of shape [ strain deviator] will in 

turn be assumed to depend only on the octahedral shearing stress. 

Assuming that the phase of the true stresses can be determined, the 

expressions for the principal true stresses are first obtained. 

and then the expressions for the generalized stresses are also determined: 

zI1 + Ear = 20 cosh.8 - 2 v1.5 q sinh;s 

c 11 -I&J = 2cos28(- a sinh 8 f -r/a q cash a) (3.7) 

Ela = sin 28 (- a sinh,O + v1.5 rt cash 8) 

The general equilibrium equations in Lagrange coordinates [ 2 I , as 

applied to the case of plane strain in an incompressible material, are 

considerably simplified and presented as follows: 

&I,1 + %.a + &I fll + &a fra + Cl, (frs + f14) - 0 

%a,1 + &.a + w12 + ~zafaa + &a (fas + f24) = 0 

if it is assumed that inertia terms are absent. 
Here the following notation was used: 

fll = + cos 28 3,1 - sinh 3 sin 20 (e + o), 1 

f1a = $sin 28 9.a + 8,, + (- 00f5h 9 + sinh 8 c0s 28) (e+q,, 

f13 = $Sin2@1 + 8.1 + (-COSh 8 + sinh 0 COS28)(e + o),l 

fld = $ cos 28 3.2 - sinh 9 sin 28 (e + ~),a 

fal= +sin2% -& + (co&3 + sinh 3 COS%)(8 + O), 1 

jz2 = - + cos 20 3, 2 + sinhe sin 28 (e + 0). a 
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f23 = $ sin 26, 2 3,2 - b,2 + (coshe f _sinh’e cos 8) (b f o),~ 

fzr = - +COS 28 3,1 + sinh 3 sin 20 (6 + w),~ 

If it is assuned that the displacement compatibility conditions (2.5) 

and the expressions for the generalized stresses (3.71 hold good, then 

the differential equations of equilibrium can be written in the form of a 

homogeneous algebraic system with tao differential operators operating on 

the stress invariants with a determinant different from zero. Ihe only 

possible trivial solution of this system represents a new form of the 

equilibrium equations: 

where 

( & - f + Ti COS 29)~ + (q sin 20). 2 =O 

(zjsin 29), 1 + (& - f - 5i cos 20). s = 0 
(3.8) 

f = 2 JKS YTi (ai) d3i (3.9) 

lhe structure of the equilibrium eiations (3.8) is similar to that of 

the corresponding equations of the classical plane problem, and it thus 

becomes obvious that it is possible to introduce a stress function U. 

Satisfying the equilibriun equations, we let 

vi3 
--f +7*cos2e=pu,zz 

k-f- 
Ti sin 26 = -pU,,,. (3.10) 

Ti co9 28 = pu,ll 

Here, for convenience, we have introduced a constant multiplier p, 

which represents the characteristic stress in every problem. Simple 

algebraic operations lead to a somewhat different form of equations (3.10) 

sin 20 = - + U,r2, cos 29 = $ * (U,,, - U,il) 

(3.11) 

7; = P2 Ku,12)2 + 3u922 -U,l$l, __ & = f + f P w922 + L) 

Since the deformation intensity is assumed to be uniquely determined 
in terms of the stress intensity, it can be asserted that not only the 

stresses but also the deformation characteristics 8 and csn be deter- 

mined from the stress function. 

For continuity of displacements and rotations corresponding to the 

system of strains thus determined, the choice of the stress function must 
be subject to the condition of compatibility of small rotations (2.7). 
substitution of expressions (3.5) and (3.11) into compatibility equation 
(2.7) leads to a differential equation, whose solution is the solution of 
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the problem in terms of the stress function. The actual form of this 

equation in Cartesian coordinates is not written down here, as below we 

will introduce a more compact formulation of the problem in complex co- 

ordinates. 

4. Formulation of the Boundary Conditions. To formulate the 

geometrical conditions on the boundary of the body we must have at our 

disposal the physical characteristics of the material (3.5) and the ex- 

pressions for the displacement components in terms of the stress function, 

Here we shall be concerned only with the general formulation of the 

static boundary conditions. 

Assume that at every point of the cylindrical surface of the body the 

true normal stress pun and’ the true shearing stress p sn are given. Here 

we can note that giving the corresponding conventional stresses pX,o, 

and P+,,, where X, is the elongation of the surface fiber, does not 

introduce any considerable complications into the solution of the problems. 

let Q be the angle between the direction of the first coordinate axis 

and the direction of the outward normal v to the surface of the body. lhe 

direction of the.unit vector r, tangent to the contour of the body, is so 

chosen that the region occupied by the body is always at the left-hand 

side when the contour is followed in the positive direction, Thus the 

vectors of the normal and the tangent are determined by the formulas 

. 
v = n111 + n-2121 s=-- Ml + nliz, n, = cosa, n, = sina 

& the basis of the fundamental relation of the deformation theory, we 

find the direction of the tangent to the contour of the body in the de- 
formed state : 

where 

h,~=)122cos2(a-~)+h,2sin2(a-~)=ch~ -sh3 cos2(a-0) (4.1) 

Having first determined the projections of the vector r in the 

directions of the principal fibers in the deformed state, the unit vector 

V’ normal to the contour of the body in the deformed state can easily be 

found : 

h,v’ = x, cos (a - 0) II’ + h, sin (01~ 0) I,’ 

After the orientation of the boundary surface element of the body with 
respect to the principal stress directions has been determined, the 

normal and tangential stresses at the boundary surface element can be 
expressed in terms of the principal stresses or the symmetric stress in- 
variment 9: 
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P&20, = hT2q - 1/‘C$.S Ti \sinhS - COSh 9 COS 2 (CC- e)] 

phT2r, = - JLGq sin2(a - 0) 
(4.2) 

If the functions 8 and oi are here replaced by their expressions in 
tenns of the stress function U, then a formulation of the boundary condi- 
tions for the stress function is obtained. In the solution of actual 
problems it is recoaraended to group these conditions so that the limit- 
ations are applied to the derivatives of the stress functions along the 
arc of the body contour. 

5. Statement of the F'rohlem in Complex Coordinates. As in 
classical problems of the theory of elasticity of the plane strain state, 
the solution of many problems in the theory of finite deformations of sn 
incompressible material is conveniently found in terms of ccmqlex co- 
ordinates. Let 

z = 51+ iz,, 

and the subscripts z and z will denote 
with respect to the given coordinates. 
(3.11) to complex variables and obtain 

sin28 = - i 5. 
,( 

U,,-Uu;;), 

i = 2, + ix, 

partial derivatives of a function 
First of all, transform formula 

cos2e = -$+J,, + U;;) 
1 (5.1) 

Ti2 = 4p2U,,Cr;,, j&j=r-+ 2pUzi, tg2e= i u,, - UE 

u,, + u;; 

Using these expressions in the displaceaent compatibility equation 
(2.71, and changing to complex variables, we find 

sinh:s 
P ( 7 u;i>lz i-p (“y Uzz);; + (coshe), + i [%(cosha); - fZ(cosh a)*] = 0 

From (5.1) it can easily be verified that 

8, = $ (Uz* u;;-- u,U,,*), 
t 

i% = $ (U&J,,- iY,,U;;) 
1 

and thus the equation to be solved is in the form 

( 

sinha 
7 Uii + 

1 1 ( z* 
'Fuzz __ 

t > 
,,-I- $ (cash a)*; -I- 

sinha da 
+p 7 2 

x (~zz;U*;; - ~zzzU;;i) =o 
. 1 

(5.2) 

If, in particular, the assumptions of the classical theory of elasti- 
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city sinh 3 = 3, cash 3 = 1, sinh 3 /r i = C- ’ are used, and components of 
the order of magnitude of the strains as compared to unity are neglected 
in equation (5.31, this equation can easily be reduced to the biharmonic 
equation. 

To represent the static boundary conditions in terms of complex vari- 
ables, let us turn to formulas (4.2) and on the basis of (5.1) state them 
as follows: 

IJh,20, =: Gcosh 3 - j/-i> ~‘i co&j 3 + 

Hence we can easily find 

AT%, 

KT--- cash 3 

W,,U;; $- ($- / -b 2U,;) (Urzezia -1.. U,e--2’*)] (5.3); 

.:= uzze2i? _ u;;e--2iz 

ch the other hand, the derivatives of the stress function along the arc 
of the contour are given by the formula 

dU 

Thus, the values of the derivatives of the stress function at the 
boundary and the values of the normal and tangential boundary stresses are 
related as follows: 

This represents the formulation of the static boundary conditions. 

. . 
In application it often becomes convenient to apply isometric curvi- 

linear coordinates, which can be obtained as a result of conformal 
mapping: 

C=C(z) 
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and the compatibility equation (5.2) becanes 

+ (“y uEF)c] + C’2-R [(“@g- 
z 

ue) Cc + (y- u,c)_J + 

+ $, 6” (cash EJ)~T + C’t’C”6;1[ ( si+ UC& + (“+ uf)J + (5.5) 

- fir;’ IPUX, + 3WU,, + (t”” + {‘c”) u I;] [<‘W,tt + 

- ^ -- 
+ 3KYJ,< + (F2 + t”6”) U-,]} = 0 

Here the strain intensity is assumed to be represented in terms of 

the stress intensity and finally in tens of the stress function, since 

ii2 = 4p2 (Uc6” + U<<C’2) (UCC;, + U~~~2) 

The boundary conditions are also subject to the same transformation. 

Let us study, as an example, the integration of the basic equation 

using an arbitrary law of chqge of shape. Since only an axisymsetric de- 

formation is desired, we shall seek a stress function which depends only 

upon the radial distance of a point in the body: 

u = Q(v), v = zz 

In the case investigated 

q2 z 4p2v2@,“2 

(5.6) 

Hence the compatibility equation becomes 

p (ST a)RZ2 ),, + p (Y wze);; + ; ; (v2 a*> = 0 

After changing to the variable u, and after two successive integrations, 

we obtain 

2P s%+P”v2-~vch~=C,v+C2 
* 

where G, and G2 are constants of integration. 

Using (5.6), we find 
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sinh 23 = 
( 

cash 3 - 2 - G, 
> 

2 

and after simple transformations the law of the change of strain inten- 

sity becomes 

cash 3 = - ,: p+ + cr + (% + CJl] 

lhe constants C, and G2 are to be determined from the boundary condi- 

tions. 

6. Special Forms of the Basic Equation Corresponding to 
Different Physical Laws of Change of Shape. Let us first con- 

sider tm special representations of the physical laws of deformation 

where the physical properties are characterized by only one constant. If 

the physical nonlinearity is expressed by the function 

q = Gsinh8, G = const (6.1) 

then it can easily be found that 

da 1 

Yq= 
- 

G’cosh a ’ 
Gosh23 = 1 + 4v20Tzzu;;,, V =- $- 

and the solution equation becomes 

2vuzz;; + (cash s)zz + c& (uz,uz;? - Cr,z,u;;;) = 0 

Using the expression of the strain intensity in terms of the deriva- 

tives of the stress function, we find 

(1 + 4V2UZ~Uif)“’ lJ,,& - 2V3 (U,JJ;i), (U,,U,)i + 

f V (1 + 4V2UzJJE) (UzzU;;)zT + { UAJ.zE - { UzzztJiii] = 0 

A more widely-occurring physical nonlinearity is of the type 

Ti = G tan 3, G = const 

In this case we find 

da cash’ a sinha cash a 
-q=G’ -==-7 

Ti G 
[J, = --j+ 

1 
- = 1 - 4[*.W,,U,, 

cash =a 
f={Gln(l-$-) 

and the compatibility equation 

(6.3) 

(6.4) 

IJ- [bosh 9 U&i + ( cash 3 U&J -1 (cash s)z; + 1~~ cash” 3 (u,,c’,i; - u,,,u,;;) = 0 

(6.5) 

is expressed in the following form: 



Finite plane deforaations of an incoupressibte aoterial 207 

u,,;; + i pkL+l m = 0 
k=l 

(6.6) 

Here a special notation for the nonlinear differential operators for 

the stress function was used: 

L, (U) = t,; _1- f lJrz;uz;; - + U,,,U;,, t = U,,U;; 

L3 (U) = - &U,,,; -+- 4&U,, -I- 2t;Uzz; -I- td;; + t,Ef,, 

L, (U) =7 - 4tL, (U) + 6t (U,,U,;; - U,,,U;;;) f 
(6.7) 

+ 6U;iaUdf,,; + 6Uzz2U;;iUz;i 

L, (U) - 16tW,,;, - 4t [2t,U,, -t- 2&U,, $ 

+ tzzU,z + WI + 6 [U;E (tz)’ f U,, W21 

‘lhe structure of the basic equation (6.2) or (6.6) and the boundary 

conditions obtained by the application of (5.4) indicates that it is 

possible to express the solutions of specific problems in terms of ex- 
pansions in series of powers of the parameter v or fi: 

u = U(O) + EfW + p2 (U)(Z) + . . . ~6.~~ 

Here the determination of the e zero-th” approximation becomes equivalent 

to the solution of the problem of the classical theory of elasticity, 

which is the generation of a biharmonic function satisfying the boundary 

conditions 
U,,;;(O) = 0 (6.93 

The following differential equations are obtained for the determination 

of successive approximations 

U&(l) + L, (U(Q) = 0 (6.10) 

U**;;(2) + L, (U@)) + (u*~(~)u~~(l) + u~~(o)u?~(l))*~ + 
(6.11) 

+ -+ (EJff$W~~~‘) + U,;$OW 2,;(1)) - $ (UrrzW;;;(‘) + fi;;$W***~‘)) = 0 

From this it follows that for the determination of each of the 

successive approximations it is necessary to find the particular solution 

of a nonhomogeneous fourth-order equation and then to determine the bi- 

harmonic function from the boundary values. lhe Muskhelishvili method is 

reconvnended I4 1 for the solution of problems formulated in this fashion. 

In conclusion, it should be noted that the q zero-th* and the *first* 
approximations for the cases of physical nonlinearity of type (6.1) or 

(6.3) are the same. ‘lhus the known I5 1 methods proposed for solving 
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problems of the nonlinear theory of elasticity with a plane deformed 

state require justification. 

7. Rxamle of Analysis of Stress Concentration Near a Circular Cyliad- 

rival Cavity in as Xnffinite Body. Let us study an infinite body having a 
circular cylindrical cavity. The axis x7 coincides with the direction of 
the axis of the cavity of radius R, and we will thus study the state of 
the plane xi, x2. The state of stress of the body at infinity is assumed 
to be given. Without loss of generality of this state we assume the body 
to be compressed by a load at infinity of intensity 2pqfi. uniformly 
distributed along axis x2. It is necessary to find the stress distribution 
around the stress-free surface of the cavity. 

From the given stresses at infinity 

in the case of a physical nonlinearity of type (6.3) we 
symmetric invariants 

compute the 

at 
From this, the formulation of the conditions for the stress function 
infinity can easily be obtained: 

U O3 =U$ =- -‘2 q, u: = - 4 q + & In (1 - $92) zz 

ID accordance with the rules of the method of small parameters, we 
find the conditions at infinity for the successive approximations: 

(U,,(O)), = (U,(O)), = td;;)a =- + 9 

(U,,(l)), = (UJ& = 0, (U(!Jco =- 4 qz 

(Up), = ( u;;f2))m = ( U.$qm = 0, * ‘. 

(7.1) 

(7.2) 

(7.3) 

The conditions at the stress-free contour L = - Rcia is obtained on 
the basis of (5.4) with dt = - Rd a: 

f U,(Q) = 0 (7.4) 

1 - ela $ ~~(1) =1 i [~zz(o)~;;(o) _ uz;(0) (Uz$o)exia + ~;;~--9l 
R 

(7.5) 

1 ,iu $ u,(2) 1= i (- (U$) +. u,, 
R 

(O)U__fOf} (~,*WeZ~= + jy;-,NQ-y + Zf 

+ u 
zz 

to)~--(i) + u;;(o)u,W _ u,;(o) (uizWe2ia + ~~$)~--Zia)l, . . . 
ZL (7.6) 

The biharaonic function U (*), satisfying conditions (7.1) at infinity 
and condition (7.4) on the contour of the cavity is known 14 I. Using 
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the Goursat formula for the representation of the biharmonic function and 
the representation of analytic functions in terms of power series. we ob- 
tain 

.(O)=tq[-,(~+~).2R”(~+ ~)+2Ph&-(I+ @] (7.7) 

and find that equation (6.10) will be satisfied if the function V (1) _ VW 

is biharmonic. Again use the Goursat formula and let 

where &(I) and ~(~1 are analytic functions. 

Satisfying conditions (7.2) at infinity, we find 

1 ---I- qm (z) = - a z + qL&+- + p_,(l) 
4 

$+ ,.I 

1 
---!Fx 
q 

(1) (2) = ‘;;(I) lu (2) + X,$(l) -&- + x-,(l) f + . . . 

When computing the boundary values of the derivatives of vC*) , we ex- 

press the condition on the contour t = - RezQ for determining function 
C!(l) in the form 

- 4 iq2R (1 + 2 cos 2a)z e--la 

When this condition is satisfied. we find 

(7.9) 

In computing the stress at the point z = - R, we obtain 

lJ,,co) I*=_n = U;;w Ir=-_R = &;(O’ jr=_n = - $4. u,,(f) = f&(l) = _ f 

U,-;(f) = - 3q= * c. = 3pq (1 + -+ fkq 1 
> 

, & =-3Pz(i+$w) 

Letting p = l/2 d% we find 

aa Ice = - p. Qz lr=_R = -P * 3 (1 -I- 04.4 (7.10) 

Thus, to allow for only the first approximation in the stress function 
expression leads to an increase of the stress concentration coefficient 
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as compared with the concentration coefficient 

theory of elasticity. 

computed in the classical 

This again demonstrates that the first approximation allows for only 

the geometrical nonlinearity. It is necessary to determine Cl (2) in order 

to allow for the effect of the physical nonlinearity. The process of de- 

termining the second approximation does not differ basically from that 
described above for computin the first approximation. Leaving out the 
complicated expression for V r21 , we here introduce only the expression 

for the concentration coefficient as computed on the basis of the second 

approximation: 

From this it follows that, starting with a maximum value of amax=3.03 

for p = 0.1, we can find a lowering of the stress concentration coeffi- 
cient together with an increase of the intensity of the external forces. 
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